
If ,'* ;L 0 (p* is formed from p by deleting the i-th component), these become greatest 

lower and least upper bounds; they are attained when the elements of K satisfy (3.11), where 
ai = czz- and q = q+ I respectively. If p* = 0 , one of the quantities JL<-, nii, equal to zero, 

is not attained at a finite A (Qi -_ 0 as ji ii j/ -, co). 
We note, moreover, that if p*= ii our result implies that the absolute values of the 

diagonal elements of R"l carnot be less than the corresponding values for the matrix (R :k')-'. 

The author is indebted to V.F. Zhuravlev for suggesting the problem and discussirlg the 

results. 
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STUDY OF TtlE WASILINEAR OSCILLATIONS OF MECHANICAL SYSTEMS WITH 
DISTRIBUTED AND LIMPED PARAMETERS* 

L.D. AKULENKO 

The averaging method is used to study a class of complex oscillatory 

systems which are described by vector integrodifferential equations with 

oscillating kernels. These equations arise when analysing mechanical 

objects which contain elements with distributed and lumped inertial and 

elastic parameters. Two physically distinct cases of the oscillation of 
rigid bodies are considered: "resonant" and "non-resonant", as determined 

by the properties of the mean values of the kernels of the integral terms. 
In the first case, it is shown that the equations of the first approxi- 
mation are equivalent to a system of ordinary second-order differential 

equations, i.e., the order of the system of equations of the motion of a 
rigid body is doubled. In the second case, sufficient conditions are 

found for the oscillating initial variables to be slow in the usual sense 

of the averaging method; the order of the system is then preserved. The 
conditions are stated, under which the averaging method can be shown to 
be strictly applicable in asymptotically long time intervals and con- 

structive error estimates are obtained. On the basis of this approach 

the perturbed horizontal oscillations of a rigid body containing a 
rectangular cavity with a two-layer heavy fluid which is elastically 
connected with a fixed base are investigated and qualitative effects are 
discovered and examined. 

*Prikl.Matem.Mekhan..52,3,392-401,1988 
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1. Formulation of the problem. When studying certain mechanical oscillatory systems 

that contain elements with distributed and lumped parameters, we have to solve Cauchyproblems 

for systems of perturbed integrodifferential equations (i.d.e.1 of the type 

t 
z’ = AZ + E 1 W (t, T) z (T) d+ f G (t, z, E) 

to 
(1.1) 

2 (to) = ZO, E E (0, e,], t - to E [o, T (E)] 

Here, z is an n-dimensional vector, zEDD, is an open domain, A is a real constant 

(n X n) matrix, whose eigenvalues have zero real parts, and corresponding to multiple eigen- 

values we have simple elementary divisors /l, 2/, i.e., the general solution 20 (t) = 2 (t) c I 
where (2 (t) is the fundamental matrix and c = con&), of the system zO' = AZ, contains only 

trigonometric functions of t (sin okt,Cos CLQ,~). The function w (t, r) is an (n X n) matrix 

which is the kernel of the linear integral operator in (l.l_), characterizing the influence of 

the distributed parts of the system on the lumped parts, see Sect.3. The elements of the 

matrix w (t, T) are assumed to be given in the quadrant of r,tE [to, co), and to be summable 

uniform almost periodic functions (UAPF) of both arguments /3/. The possibility of indepen- 

dent variation of ~,t is ensured by the time-reversibility of the oscillatory processes in 

the perturbed (elastic or fluid) media. We assume that the function G(t,z,&) is quasiperiodic 
and summable with respect to t /4, 5/, is continuously differentiable with respect to 2, ZE 

DZ, and also, has the form in E: G (t, z, E)= eng (t, z, E),, where n > 0, and g is uniformly con- 

tinuous with respect to E (henceforth the dependence of g on E is not indicated); thus, 

G (1, z, 0) FE 0 for almost all t > t,, z E D,. 
For applications, it is important to study the behaviour of system (1.1) for small values 

of the parameter e> 0 in asymptotically long time intervals: T(e)-+m as &LO. We 

refine below the order Jc>O with which G tends to zero and T tends to infinity with respect 

to e. The models thus obtained must lead to a significant qualitative changeinthebehaviour 

of system (1.1) and be of theoretical and practical interest. One such approach is the 
averaging method which we use below /5-?/. 

To facilitate the use of asymptotic methods, the integrodifferential Cauchyproblem(IDCP) 
(1.1) is reduced to the "standard form" /6/ by the transformation (z+z),non-singular for 

t E It,, ,) : 

a.(t)=eSK(t,7)~(t)d5+F(t,~(t),~), a(t,)=s’ (1.2) 

K (t, a)=.?-’ (t) W (t, T) 2 (z), F (t, x, E)=Z-’ (t) G (t, Z(t) x, E) 

z = Z (t) x, F = Cf, t - to E [o, 2’ @)I, EE (0, co] 
The matrix kernel K(t,r) has the properties of the initial kernel w(t,~), and the 

vector function F (t, I, E), IF D, has the properties of G (t,z,e), z ED,. The evolution of 

the new "slow" n-vector z is considered in the time interval t - to G [0, T(E)], in which a 

change occurs that is significant with respect to e (x(t)- 9 - 1). 

Notes. lo. Under certain conditions /l, 2, 4-71 the i.d.e. (1.1) reduces to the form 

(1.2) in which A =-4(t) is a periodic matrix, and G (t, Z, E) = g, (I) + eXg (1, z), where go (0 is 
a UAPF. 

2'. An IDCP (1.1) or (1.2) is equivalent to a Cauchy problem for a denumerable system of 

quasilinear ordinary differential equations (o.d.e.1 /0, 9/. An averaging methodwasdeveloped 

in /8/ as applied to quasilinear oscillatory systems with a denumerable number of degrees of 

freedom (construction of the so-called one-frequency approximation). 

3'. Methods for the approximate study of a linear IDCP of type (l.l), when A = A (et), 

w = w (Et, ET) are slowly varying matrices , may be found in /lo/; and IDCP in the standard 

form (1.2) with an integral operator whose kernel is non-linear in z were considered under 

very strict conditions on the means in /ll/ etc. 
4O. IDCP of type (l.l), (1.2) can be obtained by reduction of systems which describe the 

oscillations of rigid bodies, connected by boundary conditions with wave motions of systems 

with distributed parameters (strings, beams, shafts, rods, or a heavy fluid etc.), and also 
by means of lumped reverse couplings (e.g., elastic elements) with fixed objects. The 

horizontal periodic motions of a rectangular vessel containing an ideal heavy fluid with a 

free surface, were considered in /12/. 
The averaging method was used in /9/ to solve a linear IDCP of type (l.l), (1.2) when no 

account is taken of perturbations (G = F ZE O), and the problem describes the one-dimensional 

oscillations of a rigid body that contains a rectangular cavity, entirely filled with a heavy 

ideal two-layer fluid (a similar example when account is taken of perturbations is considered 

below in Sect.3). 

In the present paper the averaging method is developed for an IDCP of the general type 



(1.2). We prove error estimates urider different assumptions about the properties of tile- iun~- 

tions K (1, T) and F (t, .t, e), T, t - It,, x), 5 -= D,, E ‘7 (0, ~1. 

2. Construction and proof of averaging-method schemes, The basic mathematical 

apparatus for the approximate construction of an IDCP of simpler type than the initial (1.2;, 

and for analysing the solutions and obtaining error estimates, is the Volterra vector integral 

equation 

Eq.(2.1) follows directly from the i.d.e. (1.2) and the properties of the UAPF /3/. In 

(2.1) the elemnts of the matrices K,(‘)(z), I!,, (t,T.) are assumed to be UAPF, continuous and 

uniformly bounded for 7, tE [to, m). Here and below, the superscript (1) or (2) means that 

averaging (subscript 0) is performed with respect to the first or second argument; when 

averaging is performed with respect to both arguments, the superscript is omitted. 

We next determine how the "slow" variable t changes with respect to t and et depending 

on the properties of the matrix L (t, 2) (2.1) . We consider two cases: 1) "resonant", when 

K,(1) (z) + 0, and 2) "non-resonant", when K,(r) (7) = 0, z t? [to, CO) and supplementary sufficient 

conditions hold. 

2.1. Averaging in the "resonant" case. Let X,(r) (z) f 0; then, in the general case, we 

put SC = 'J, and we associate with Eq. (2.1) in slow time 6 the averaged equation 

f. (E) = 
- <f (6 S)>t 

(2.2) 

Here and below, 8 = Con& i.e., T (E) = @!fi - Iif& Differentiating (2.2) with respect 

to 8, we arrive at the averaged IDCP, corresponding to the initial IDCP (1.2): 

(2.3) 

The IDCP (2.3) can be written as a Cauchy problem for systems of o.d.e.'S of Order 2r2 

in two ways: 

Y' = %, E' = Kook + fo (%), Y (6,) = 09 E (0,) = zQ (2.4) 

Y" = K,,Y + fLl (Y'), y (@,) = 0, Y' (&J) = x0 (2.4') 

E' = v, V' = K,,% -+ fo' (%) v, E (0,) = 9, Y (8,) = f. (2) (2.5) 

%'* = KS,% + fi (5) ES, E fe,i = 2, 5’ 63,) = f wf (2.5') 

The second form (2.5) or (2.5') of the Cauchy problem is admissible because the function 

fo (E) is continuously differentiable with respect to % E D,. It follows from (2.4)-(2.5') 

that, in an interval B-0,-6- 1, the averaged variables %, y,v receive significant 

increments of order unity; this is important for applications. The initial variable z= r (t, 
S) varies similarly, since we have: 

Assertion 1. Let K (t, T), a,te [t,,x) be a UAPF, and let f(t,x) be quasiperiodic with 

respect to t and continuously differentiable with respect to x, the derivative beinguniformly 
bounded for t-Z It,,,=), xr+D,; also, let the solution % = % (0) of the averaged IDCP (2.3) 

exist and % (0) = DX, 8 - (jO c= 10, 01. Then, for sufficiently small SO> 0, SE (0, e,], we have 
the estimate 

Ix (t, E) - 5 @)I < JZ (et, t - t, E [O, w jm (2.6) 

where C is a parameter, independent of d,e, defined constructively by the properties of 

function5 K ft. r), f (6 2). 
For, putting x=%-t-6, where 6 is the estimated unknown variable (the error), we 

obtain by means of (2,1)-(2.3) the expression 
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(2.7) 

The integration is performed in (2.7) in the light of the dependences 6~ 6(r), E = g(e), 

a= I/Z%. To estimate s(1) and the time interval t-tt,- T(E), we use Gronwall's lemma /2, 

4, 6, 7/; the result is the required estimate (2.6): 

I 6 (t)I < i/i-(@ + f,J exp l1l&o(l’ Oa -I- l/i&0 + foe’ 01 = 
JGc* (6, r/T) < l/i% (0), t -to E IO, 0 I I/Cl, 

E E (0, E,,] 

k,(r) = SUP II KP (dl, 
t 

I, = s,“p II -h (t, 4ll; 

(2.8) 

The coefficients fO,,‘,ft, and g in (2.8) depend continuously on the parameters 0, I/z 

The norm of the matrix af(t, E)/aE is bounded, because its elements are continuous and quasi- 

periodic with respect to t, tE &coo) and are continuous and uniformly bounded with respect 

to E,EFD,. We prove that f* and g are bounded by writing f (‘c, 5) and K,(r) (T) as Fourier 

series /3/ and subsequently integrating by parts and using the estimates 

0 (I/ I/q. 
E' = 0 (1/F), t - t, = 

A detailed proof of the estimate for g may be found in /9/, and for f, in /5/, 
in the same way as when averaging an o.d.e. 

2.2. Averaging in the "non-resonant" case. Now let K&l) (T) s 0; the results of Sect.2.1 
with Koo = 0 then remain valid (Assertion 1 and Eqs.(2.2)-(2.5)). The asymptotic analysis 

of the IDCP (1.2) or integral Eq.(2.1) for a time interval t- t,,c LO, WEI is of theoretical 
and practical interest. Thus, let us have 

K,(l) (z) = (K (t, T))~ EE 0, F (t, z, e) = ef (t, z) (2.9) 

i.e., the degree n=1 and is matched with the statement of the problem. The kernel L (t,z) 
in (2.1) is then a UAPF for 'c, t f? [ta, 30). With the initial Eq.(2.1) we associate the follow- 

ing integral equation with functions L,f, averaged with respect to the argumentofintegration 

(analogous with averaging of an 0.d.e.): 

? (t) = s" + sLf' (t) 
s 
t q (4 dz + E j fr, (7) CT)) d? 

Lo@) (4 = <L (t$ & = <L* (4 :,x, t - t, E [O, we1 

(2.10) 

In the general case, the variables z,r) are not slow in the sense of /6, 7/, i.e., we do 
not have i, n' = 0 (e) for t - t, = 0 (l/e). This can be established by examples. 

lo. We consider the special case of Eq.(2.10) when f. (q)ssO,q~ Dx and <L,@)(t)), = Lo,=O. 

The solution of the linear equation is found as 

t 
‘10) = Y (t) + eq (t) s u (7) d7 (to= 0) (2.11) 

0 

where y is the new unknown, obtained by solving the equation 

t 
y(t)= z”+ e’s V (t,r) y(r)dr 

0 
t 

(2.12) 

V(t, T) = 5 Lff)(t)L(o)(u) du 
z 

The kernel V(t,r) in (2.12) is an UAPF with respect to both arguments, and 1 V/g v. =.const. 



Using the results of Sect.2.1 for Eq.(A.12), ami putting ~=.$+6, we obtain the est tr~i,~t~~ 

j 6 (4 1 4 EC w, t ~‘1 = I 8 I d EB (e), t E IO, 8 i EI {'.I.:, 
i I f I i ef (0~ll(~~'~*~ + &I = B, (e, E) <B (e), E c (0, e*l 

The constant (v~')* Upper-bound.5 the norm of the matrix av/ at, whose elements must be 
uniformly bounded. By ('.ll), the expressions for 7),t)‘ have the form for t~]O,Bie]: 

Yj(',F)-r=X'+D(t,&) i-OL~'(f)Z IpLL2'il)/j6(T,P)dZ:~ 
; 

(2.1'1) 

2" I_ 0~~2)(~)~~ + Eeft, E), 1 e 1 cc* = eltnst 

t 

$(t. E) = g’(t, e) + @f”(t).+‘-+ EL!)’ (t) s h(t, 8)dt i_ S@)(t) [z”+& (1, e)]~ 

II 

W$)‘(t)r” +~h(t, e), 1 h / $ h, = coast, t E [0, e/e], 0 = ct, 13 E [0, 01 

From (2.14) there follows, for to(2)'(t)f:0, which is equivalent to t,(a) (t) f L,, = 0, the 
required estimate: 9. = 0 (1) for t = 0 (1 / 8). 

Z". We will consider another example, when there exist the inverse matrices (L,(2) ("))-', 
t E 10, =J) and Loo-'. By the replacement q-y we obtain the integral equation equivalent to 
the o.d.e.; for, 

By differentiating (2.16) with respect to t we can obtain by the averaging method, to a 
first approximation in 8, the expressions for Y, q: 

Y (t, 8) = 5 (0) I- 6 (6 6)s 1 6 1 < EC (% 0 = Lo, el (Z.li) 

5 (0) = 2 c%~". z (l3) = exp (L&l) (E = L,,Z) 
?I (t, e) = I0 + LJ.3) @Lo,_ [Z (0) - El.?? + ah (t, e), I h j < fL* = 

const 

Thus, y is a slow, and 11 a fast, variable in the above sense; but the mean of tI with 
respect to t for a fixed 0 is a slow variable. It is also been as a result that, with 
K,>(') (z) f 0 I the vector solution z = .z(~,E) of Eq.(2.1) is in general not slow, while at the 
same time, the vector 4 = ~(1. ~1 is the solution of Eq.(2.10). 

Assertion 2. Under the conditions of Assertion 1 with regard to the properties of smooth- 
ness, boundedness, and the existence of a uniform mean with respect to t,z of the functions 

L (6 r), f (t, 51, and the condition Li"(1)sz Z&, = const for t E It,,, w), it follows that: 1) the 
variable 11 = q(t,e) is slow, in fact: 11 = IJ (e), where 8 = et, B-f3B, E 10, Sl, 0 u 1; if 
9 (0) e D, here, then 2) with sufficiently small E,,> 0 we have 

1 CT (t, e) - ‘1 (e)j ,i, EC (@), t - t, E lo, @/El, E E (0, Egl (2.18) 

The proof of property 1) follows at Once from Eq.(2.10) with @(t)~&. We Can then 
introduce the slow argument 6 =st, and the following equations, equivalent to the Cauchy 
problem for a first order o.d.e.: 

The estimate (2.18), i.e., property 2), is proved by applying Gronwall's lemma fcr the 
difference 6 = z-r); in fact, for the equation 

G(t)=&D(t 7 z> r) W i 6 (~1) - @ (6 2, rl WI dr + (2.21) 
:. 

in the same way as (2.U) for the error 6rwe obtain 

18 I ;;I; F (r + f,) exp II + &‘),I = EC, (e, 8) < eC (@) (2.22) 



309 

The same remarks can be made about estimates (2.22) as in Sect-Z.1 (see (2.6)). 

2.3. Notes. lo. The condition Lo(") (t) EL,, is satisfied e.g., when a) L (t, ') = L* (t - 7) + 
L** (G Z)% where iL** (t, x)& %z 0, since then (L (t,zbl = tL* (o)>~ = L,,, or b) L (t, 7) = L* (T) + L*+ (t, t). 

(c) and in other cases, see Sect.3. 
20. Let the disturbance F in Eq.(2.1) be linear with respect to z, i.e., f (t, 4 = M (tb + 

B w. where M,p are UAPF's, and let us have the non-resonant case (2.9). Then, by the 
replacement I- y of type (2.11), Eq.(2.1) conveniently transforms to 

s(t)=y(t)fsSN(t,T)y(t)dt, N(Gq=L(t,e-t-Mfr) 
& 

(2.23) 

t 
I!(t)=Z*fEaSW(t,r)y(r)d~+Em(t) 

t. 
t t 

W (f, T) SE s N (t, CT) N (o, 7) do, m (t) E s p (7) ds 
7 t, 

The following forms are possible for the kernel W (t, t): a) W (t, 7) is a UAPF, IWl<W*-- 
const for t, t > tO; b) JV(t,r) is written as the sum w(t,z) = W* (z)(t --)+ W** (this case occurs 
when N (t, z) E N (z)) or W (t, it) = W* (t - z)(t - z) + W** (t. z), where w*, w** are UAPF's; c) in the 
most general case, the matrix function %'(t,~) can have the form W (t, r) = W* (t, z)(t - z) + W** (1, 2). 
where W*, W** are UAPF's. In cases a), b), we can show by Assertion 1 and the results of 
Sect.2.1 that y is a slow variable: 

Y = Y (f, 6) = 6 (0) +  6 (f. e), f - f, E IO, @ i 4 I 6 I < EC (e) (2.24) 

rco,=z~+w@?~ (6---)5(6)de+Po(e-&l) 
e. 

The corresponding IDCP (2.3) and the Cauchy problem (2.4), (2.5) for the o.d.e. are 
obtained in the same way as indicated in Sect.2.1. In the general situation c), the vector 
y is slow in the sense of /6, 7/ for asymptotic methods (see Sect.2.2). It is not possible to 
construct its approximate (asymptotic) expression for t - t, - 1 I 8, in the same way as in the 
general case of a perturbing function f&z) (1.2)‘ (2.91, which is non-linear with respect 
to s. 

3O. Equivalent to our approach (2.23) is the method of averaging with respect to both 
argumentsofthe kernel N&T) in Eq.(2.1): 

(2.25) 

Theconditionfor q(9) to be e-close to .V (t,e) for t - t, E [O, e/ 81 has the form X@(2) (1) = 
<N (f, T)>+ = N,,,=const, which corresponds to the condition t,(" (t) = L,, = collst (see Sect.2.2, 
Assertion 2). 

4O. We now take the IDCP (1.2) in which the kernel K(t,@ is averaged with respect to 
the argument of integration z (K,,@)(t) = (K (t, T))~): 

t 
(2.26) 

The variable y=y(f,e) is certainly slow in the sense of Sect.Z.1: y.=o(fi)), t--t,=~(i/ 
fzj(n = I/*). We do not in general have slowness in the sense of Sect.2.2 (with x= 1). Let 

Y (1, & be the solution of IDCP (2.26) with x= 1 for f-f, E-IO, 0/e]; then, I + (& e) - Y (6, E) I % 
eC(e) if 

t 
<s (65)>% SO, S&r)= 5 [K(o,~f- @'(of] do (2.27) 

r 
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In order that the variable y be slow for t-t,,= ~(1: t). we must have K,,(Z) (t, ~~ (1: it: I L 
ensures that .r(t,~) be &-close to y (t, e) if S(t,d) = L (f-r) has zero mean with respect t (1 
z : L”(2) (1) G 0, which is a stricter condition than that taken under the conditions of Assrrtiori 
2 (L"(2) (1) E I*,,,). 

So. Consider the non-resonant case (2.9). Using Gronwall's lemma iI the same way as 
above, we then obtain the elementary estimate (see /9/) 

15 (t, 8) -- 2’ I <&b (8), t - to E IO, e i El-‘y, 0 < fl 6; 1 (2.28) 

Here, b is a parameter, and B a constant, independent of /,e. If r+(O) is the solution 
of the averaged d.e. r$ = f. (cp), cp(t&) = z', where 13 = ~"t is "slow time" and 13 - H, E IO, @I. (1 K. 

s < 1, we can obtain the estimate 

1 I (1, ei - cp (f3) 1 < eYB (8), y = min (n, l-x), 0 < 'i' < 1 (2.29) 

6O. The above results can be extended directly to the IDCP (1.2) with slowly varying 

parameters (after suitable transformation of the IDCP (1.1)) 

In accordance with the different assumptions of Sect.2.1 (x-'/J and Sect.2.2 (n 

the averaged IDCP's are obtained by scheme (2.4) and (2.20): 

f 
./ ‘(I) = f CK(O,O,t,7)s(r)drf~=j(e,t,~(f)) (2.30) 

(2.31) 

(2.32) 

7O. For applications it is worth further developing the averaging method for non-linear 

IDCP's and integral equations, e.g., of the type 

.c' (t) = r (1, I (t), I, E), 5 (to) = z” (2.33) 

t 
I = I [.t] -I E s A’ (t. 7, I (tl, Z(T)) dr, t - to E [O, T (e)] 

f. 

If (t, z (t), I Id, e) = 0, e E (0. %I (2.34) 

In particular, the vector functions F,H may be linear with respect to the non-linear 

integral operator I of z. The powers of the small parameter e in F and Ii may be different 

orders II, though they must be matched as indicated in Sects.2.1 and 2.2. 

3. Perturbed oscillations of a vessel containing a stratified fluid. we 
used the above method to study the oscillations of the system described in dimensionless 

variables by the IDCP (1.1): 

s (0) = 8, S’ (0) = 0, t E IO, 8e-nl, n = V2, 1 

(3.1) 

The relevant assumptions, the derivation of the IDCP (3.1) with p=O and its study in 
the resonant case may be found in /9/. In (3.1), s = s (t) is the vessel displacement, vi* 

are the eigenfrequencies of the internal waves of the two-layer fluid, and s>O is a small 
numerical parameter, giving the influence of the fluid oscillations on the system as a whole, 

whose mass is equal to the sum of the vessel and fluid masses and the apparent additional 

mass. By the "rotation" transformation ((s,s')+xr), the IDCP (3.1) is reduced tothe standard 

form 

(3.2) 
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x’ (t) = E f K (t, T) x (t) dz + +f (t, z(t)), x(0)=x” 
Ii 

a” = so, b” = 0, fr (t, x) = p (t, II(t) x) (--sin t, cos t) 

sintsint sintcosr 
-cosfsinr _costcos7 det K (t, T) z 0 

We first consider the strictly resonant case vR* = l(k =i 0,1,2,...); the frequency 

difference O(G) can be referred to the perturbation. In accordance with Sect.2.1, we 

obtain in slow time 8 = l/it the averaged IDCP of type (2.3) (xh. = (2k + 1)-4): 

Fj'@)=Klo i 5 (6)d6 + f0(E (H)), 5 (0)=x" 
i 

(3.3) 

ET = (a, p), K,, = -(xJ4) diaq (1. I), (f Ct. 3 >I =f~ (5) 

In accordance with (2.4), (2.5), the IDCP (3.3) is equivalent to a Cauchy problem for 

two second-order o.d.e.'s; the integral term reduces to a supplementary "return force". With 

f0 = 0 there are "beats" in the system (see /9/) : s(t, E) = so co~(~/~x~e)cos t + O(r/F) for 

t E IO, o/l/;]. Let p =ds3, i.e., we take account in (3.1) of a typical non-linear added term 

to the elastic force restoring the vessel; then in (3.3) we have foT = ?I,) d (a" + B") (-By a). 
By introducing the variables c,q, where 5' = a, 11' = 8, and assuming for simplicity that 

the initial conditions are zero (see (2.4), (2.4')), we obtain a system of two second-order 

0.d.e.' s which has the two first integrals C,,*: 

l/z (C2 + p) + (x1,/8) (5” + q’) = c,, c, = ‘/,42 > 0 

- s’rl + $5 = (“i,) dC, (6” + qz) - (31128) dxk (5” + Q~)~ + 
G, c, = 0 

(3.4) 

Using relations (3.4), the system is completely integrable; passing to polar coordinates 

(r, cp), we obtain instead of (3.4): 

1/2(r’2 + r2cp’2) + (xk/8) r2 = V,P 

r2’p’ = (3/16) d.Par2 - (31128) d@ 

r’2 + r2d2 [(3/16) so2 - (31128) xkr212 + (~~14) r2 = so2 

(3.5) 

The last relation of (3.5) for r, which is integrable in elliptic functions, is obtained 

by a combination of the first two integrals. After finding r = r(6,s”) from the second 

equation, we find that cp' (0, so) = (3/128) dxkr2-(3/16) d.P. By differentiating r and integrating 

'p' with respect to '8, we find the unknowns a= ~'(El,s"), p = _rl'(e,S'), which, in accordance 

with (3.2) and Sect.2.1, give the coordinate s (G a) and velocity s'(t,~) of the vessel with 

an error of 0(1/L) for t N l/J/E. 
Now consider the non-resonant case: vj* f 1 I O(]‘g), i = 0,1,2,..., and n = 1; then, 

from (2.20) and Sect.2.2, we have 

a' = Afi - ('is) d/3 (a” + p’), /3’ = --Aa + (“i,) da (a” + (3.6) 
P”) 

It follows from (3.6) that, with p 0 (d = 0), the influence of internal waves of the 

two-layer fluid on the oscillations of the system is equivalent to "gyroscopic forces" and a 
change of frequency by sA, which can have either sign (As 0). 

If a non-linear (cubic) perturbation is taken into account, we arrive at a similar effect: 

S = so cos II + &A - (s/8) edPI t + 0 (c) for t E [O, O/El. 

The influence of other perturbations can also be taken into account, e.g., an external 

almost periodic perturbation, viscous and quadratic friction, or parametric disturbance, etc. 

Our method is suitable for studying any oscillatory processes of elastic systems that contain 
elements with lumped anddistributedparameters. 

The author thanks S.V. Nesterov for drawing his attention to the importance of asymptotic 

studies of interest for mechanical applications of a class of integrodifferential equations. 
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OF THE EQUATIONS OF MOTION 
BODY IN A LIQUID* 

RUBANOVSKII 

General integrable cases of the Kirchhoff-Clebsch equations /l, 2/, with 
a fourth quadratic interval not explicitly dependent on time, areconsidered. 

A proof is presented of Steklov's theorem /3/ that the four cases pointed 

out by Clebsch /2/, Steklov /3/ and Lyapunov /4/ are the only ones for 
which the equations of inertial motion of a body in a liquid admit of a 

fourth quadratic integral. An analysis is presented of Lyapunov's statement 

/4/ that his integrable case may be considered as a limiting case of 

Steklov's, and Clebsch's third case as a limiting case of his second. It 

is shown that the fourth integral of the Kirchhoff-Clebsch equations pointed 

out by Kolosov /6/ does not lead to integrable cases other than those of 

Steklov and Lyapunov. 
In recent years, reports have been published concerning the "discovery" 

of new integrable cases of the equations of motion of a charged body in 

a magnetic field, which are isomorphic to the Kirchhoff-Clebsch equations; 

this runs counter to Steklov's theorem. This prompted the author to 
undertake an analysis of Steklov's original account /3/, which entirely 

vindicates the latter's theorem. 

1. We consider the problem of the inertial motion of a free body bounded by a simply- 
connected surface, in a homogeneous, incompressible, ideal liquid, unbounded in all directions, 

which is in irrotational motion and stationary at infinity. 
The kinetic energy of the "body-plus-liquid" system is /2/ 
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